Problem: (a) Calculate pH and (b) the fraction of CH_3CO_2H ionized at equilibrium.

	$CH_3CO_2H \iff$	H ⁺ +	$CH_3CO_2^-$
Initial	1.0M	~ 0	0
Equilibrium	1.0 – x	x	x

$$K_{a} = \frac{(x)(x)}{(1.0 - x)}$$

assume x << 1.0
 $K_{a} = \frac{(x)(x)}{(1.0)}$

$$K_{a} = 1.8x10^{-5} = \frac{(x)(x)}{(1.0)}$$
$$x = \sqrt{1.8x10^{-5}}$$
$$x = 4.3x10^{-3}$$
$$pH = -\log[4.3x10^{-3}] = 2.3$$

Question

The pH of 0.1M CH_3COOH is 2.87. What is the value of the acid dissociation constant, K_a ?

pH = -log [H₃O⁺] = 2.87 \Rightarrow [H₃O⁺] = 1.35 × 10⁻³ CH₃COOH + H₂O → H₃O⁺ + CH₃COO⁻ K_a = [H₃O+][CH₃COO⁻]

	CH₃COOH	H ₃ O+	CH ₃ COO ⁻
Initial conc	0.1	0	0
Equil. Conc	0.1 – x	x	X

[CH₃COOH]

$$K_{a} = [1.35 \times 10^{-3}][1.35 \times 10^{-3}]$$
[0.1]

 $K_a = 1.8 \times 10^{-5}$

Calculate the pH at 25°C of a 0.18 *M* solution of a weak acid that has $K_a = 9.2 \times 10^{-6}$.

	HA(aq)	\longrightarrow H ⁺ (aq)	$+ A^{-}(aq)$
Initial concentration (<i>M</i>):	0.18	0	0
Change in concentration (<i>M</i>):	- <i>x</i>	+x	+x
Equilibrium concentration (M) : 1	8-x	X	X

9.2 x
$$10^{-6} = \frac{(x)(x)}{0.18 M - x}$$

Use the approximation since K_a is small compared to C_i . 9.2 x $10^{-6} = \frac{x^2}{0.18 M}$

 $1.3 \times 10^{-3} M = x$

Check the approximation:

 $\frac{1.3 \times 10^{-3} M}{0.18 M} x 100 = 0.72\%$

0.72%<5%

Approximation is valid.

 $pH = -log(1.3 \times 10^{-3} M) = 2.89$

Acid ionization constants of some monoprotic weak acids at 25 °C

Acid	Formula	Structural Formula	Ionization Reaction	Ka
Chlorous acid	HCIO ₂	H - 0 - CI = 0	$\begin{array}{r} HCIO_2(aq) &+ H_2O(l) \\ \\ H_3O^+(aq) &+ CIO_2^-(aq) \end{array}$	1.1×10^{-2}
Nitrous acid	HN0 ₂	H - 0 - N = 0	$HNO_{2}(aq) + H_{2}O(l) =$ $H_{3}O^{+}(aq) + NO_{2}^{-}(aq)$	$4.6 imes 10^{-4}$
Hydrofluoric acid	HF	H F	$HF(aq) + H_2O(I) =$ $H_3O^+(aq) + F^-(aq)$	$3.5 imes 10^{-4}$
Formic acid	HCHO ₂	0 ∥ Н — 0 — С — Н	$\begin{array}{r} HCHO_2(aq) &+ H_2O(l) \\ H_3O^+(aq) &+ CHO_2^-(aq) \end{array}$	$1.8 imes 10^{-4}$
Benzoic acid	HC ₇ H ₅ O ₂	H - 0 - C - C - C - C + H - C + C + H - C + C + H - C + C + H - C + C + H - C + C + C + C + C + C + C + C + C + C	$\begin{array}{rcl} HC_{7}H_{5}O_{2}(aq) & + \;H_{2}O(l) \\ & \\ H_{3}O^{+}(aq) & + \;C_{7}H_{5}O_{2}^{-}(aq) \end{array}$	$6.5 imes 10^{-5}$
Acetic acid	HC ₂ H ₃ O ₂	$H \longrightarrow 0 \longrightarrow C \longrightarrow CH_3$	$\begin{array}{rcl} HC_{2}H_{3}O_{2}(aq) &+ H_{2}O(l) \\ &\\ H_{3}O^{+}(aq) &+ C_{2}H_{3}O_{2}^{-}(aq) \end{array}$	$1.8 imes 10^{-5}$
Hypochlorous acid	HCIO	H 0 CI	$\begin{array}{rcl} HCIO(aq) &+ H_2O(l) \\ & \\ H_3O^+(aq) &+ CIO^-(aq) \end{array}$	$2.9 imes 10^{-8}$
Hydrocyanic acid	HCN	$H - C \equiv N$	$\begin{array}{r} HCN(aq) \ + \ H_2O(l) \\ \\ H_3O^+(aq) \ + \ CN^-(aq) \end{array}$	$4.9 imes 10^{-10}$
Phenol	$\mathrm{HC_{6}H_{5}O}$	HO - C C CH CH CH CH CH	$\begin{array}{rcl} \mathrm{HC}_{6}\mathrm{H}_{5}\mathrm{O}(aq) & + \mathrm{H}_{2}\mathrm{O}(l) & \overleftarrow{} \\ \mathrm{H}_{3}\mathrm{O}^{+}(aq) & + \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}^{-}(aq) \end{array}$	$1.3 imes 10^{-10}$

Weak Bases and Base Ionization Constants

To define the base ionization constant K_b we write: B(aq) + H₂O(l) \leftrightarrow HB⁺(aq) + OH⁻(aq)

$$K_b = \frac{[\mathrm{HB}^+][\mathrm{OH}^-]}{[\mathrm{B}]}$$

where HB+ is the conjugate acid of base B

 $[OH^{-}] = \sqrt{C_b * K_b}$

p*K*

- A way of expressing the strength of an acid or base is **p***K*.
- $pK_a = -\log(K_a), K_a = 10^{-pKa}$
- $pK_b = -\log(K_b), K_b = 10^{-pKb}$
- The stronger the acid, the smaller the pK_a .
 - Larger $K_a =$ smaller pK_a
 - Because it is the -log
- The stronger the base, the smaller the pK_b . - Larger K_b = smaller pK_b

Ionization constants of some weak bases at 25 °C

Name of base	Formula	Structure	K _b
Ethylamine	$C_2H_5NH_2$	$CH_3 - CH_2 - \ddot{N} - H$	5.6×10^{-4}
Methylamine	CH ₃ NH ₂	$CH_3 - \ddot{N} - H$ H	4.4×10^{-4}
Ammonia	NH ₃	$\substack{\mathrm{H}-\ddot{\mathrm{N}}-\mathrm{H}\\ \\\mathrm{H}}$	1.8×10^{-5}
Pyridine	C ₅ H ₅ N	N:	1.7×10^{-9}
Aniline	C ₆ H ₅ NH ₂	— Н Н	$3.8 imes 10^{-10}$
Urea	H ₂ NCONH ₂	$\substack{\textbf{H}-\overset{\textbf{O}}{\overset{\textbf{H}}{\underset{\textbf{H}}{\overset{\textbf{H}}{\overset{\textbf{H}}{\overset{\textbf{H}}{\underset{\textbf{H}}{\overset{\textbf{H}}{\underset{\textbf{H}}{\overset{\textbf{H}}{\underset{\textbf{H}}}{\overset{\textbf{H}}{\overset{\textbf{H}}{\overset{\textbf{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}}}}}}}$	$1.5 imes 10^{-14}$

Equilibria Involving A Weak Base

You have 0.010 M NH₃. Calculate the pH. NH₃ + H₂O \longrightarrow NH₄⁺ + OH⁻

 $K_b = 1.8 \times 10^{-5}$

Step 1. Define equilibrium concentrations. $[NH_3]$ $[\mathrm{NH}_4^+]$ [OH-] 0.010 Initial 0 0 change +x+x-X 0.010 - x equilib X X

Equilibria Involving A Weak Base You have 0.010 M NH₃. Calculate the pH. $NH_3 + H_2O \longrightarrow NH_4^+ + OH^ K_{\rm h} = 1.8 \times 10^{-5}$ Step 2. Solve the equilibrium expression $K_b = 1.8 \times 10^{-5} = \frac{[NH_4^+][OH^-]}{[NH_3]} = \frac{x^2}{0.010 - x}$ Assume x is small $(100 \cdot K_{\rm h} < C_{\rm o})$, so $x = [OH^{-}] = [NH_{4}^{+}] = 4.2 \times 10^{-4} M$ and $[NH_3] = 0.010 - 4.2 \times 10^{-4} = 0.010 \text{ M}$ The approximation is valid