Problem: (a) Calculate pH and (b) the fraction of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ ionized at equilibrium.

$$
\begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} & \leftrightharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \\
1.0 \mathrm{M} & \sim 0 & 0 \\
1.0-x & x & x
\end{array}
$$

Initial
Equilibrium

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{(\mathbf{x})(\mathbf{x})}{(1.0-\mathbf{x})} \\
& \text { assume } \mathrm{x} \ll 1.0 \\
& \mathrm{~K}_{\mathrm{a}}=\frac{(\mathbf{x})(\mathbf{x})}{(\mathbf{1 . 0})}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{K}_{\mathbf{a}}=1.8 \times 10^{-5}=\frac{(\mathbf{x})(\mathbf{x})}{(1.0)} \\
& x=\sqrt{1.8 \times 10^{-5}} \\
& x=4.3 \times 10^{-3} \\
& p H=-\log \left[4.3 \times 10^{-3}\right]=2.3
\end{aligned}
$$

Question

The pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is 2.87 . What is the value of the acid dissociation constant, K_{a} ?

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad=2.87 \quad \Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.35 \times 10^{-3}
$$

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \underline{\mathrm{O}+]\left[\mathrm{CH}_{3}\right.} \frac{\left[\mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right.}{\text { an }}
$$

	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
Initial conc	0.1	0	0
Equil. Conc	$0.1-\mathrm{x}$	x	x
$\mathrm{K}_{\mathrm{a}}=\frac{\left[1.35 \times 10^{-3}\right]\left[1.35 \times 10^{-3}\right]}{[0.1]}$	$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$		

Calculate the pH at $25^{\circ} \mathrm{C}$ of a 0.18 M solution of a weak acid that has $K_{\mathrm{a}}=9.2 \times 10^{-6}$.

$$
\mathrm{HA}(a q) \nLeftarrow \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Initial concentration (M) :
Change in concentration (M) :

Equilibrium concentration $(M): 18-x$ x	$-x$	x

$$
9.2 \times 10^{-6}=\frac{(x)(x)}{0.18 M-x}
$$

Use the approximation since K_{a} is small compared to C_{i}.

$$
9.2 \times 10^{-6}=\frac{x^{2}}{0.18 \mathrm{M}}
$$

$$
9.2 \times 10^{-6}=\frac{x^{2}}{0.18 \mathrm{M}}
$$

$$
1.3 \times 10^{-3} M=x
$$

Check the approximation:

$$
\frac{1.3 \times 10^{-3} M}{0.18 M} \times 100=0.72 \%
$$

$$
0.72 \%<5 \%
$$

Approximation is valid.

$$
\mathrm{pH}=-\log \left(1.3 \times 10^{-3} \mathrm{M}\right)=2.89
$$

Acid ionization constants of some monoprotic weak acids at $25^{\circ} \mathrm{C}$

Acid	Formula	Structural Formula	Ionization Reaction	$K_{\text {a }}$
Chlorous acid	HClO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}=\mathrm{O}$	$\begin{array}{r} \mathrm{HClO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \\ \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq}) \end{array}$	1.1×10^{-2}
Nitrous acid	HNO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{N}=0$	$\begin{array}{r} \mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}{ }^{-}(a q) \end{array}$	4.6×10^{-4}
Hydrofluoric acid	HF	H-F	$\begin{aligned} & \mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q) \end{aligned}$	3.5×10^{-4}
Formic acid	HCHO_{2}		$\begin{aligned} & \mathrm{HCHO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CHO}_{2}^{-}{ }^{-}(\mathrm{aq}) \end{aligned}$	1.8×10^{-4}
Benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$		$\begin{aligned} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}(a q) & +\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \\ \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) & +\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(\mathrm{aq}) \end{aligned}$	6.5×10^{-5}
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$		$\begin{aligned} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) & +\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \\ \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) & +\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq}) \end{aligned}$	1.8×10^{-5}
Hypochlorous acid	HClO	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}$	$\begin{aligned} & \mathrm{HClO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \\ & \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq}) \end{aligned}$	2.9×10^{-8}
Hydrocyanic acid	HCN	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	$\begin{gathered} \mathrm{HCN}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \\ \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \end{gathered}$	4.9×10^{-10}
Phenol	$\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}$		$\begin{aligned} \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}(a q) & +\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q) & +\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(a q) \end{aligned}$	1.3×10^{-10}

Weak Bases and Base Ionization Constants

To define the base ionization constant K_{b} we write: $\mathrm{B}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{HB}^{+}(a q)+\mathrm{OH}^{-}(a q)$

$$
K_{b}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

where $\mathrm{HB}+$ is the conjugate acid of base B
$\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{C}_{\mathrm{b}} * \mathrm{~K}_{\mathrm{b}}}$

$\mathrm{p} K$

- A way of expressing the strength of an acid or base is $\mathbf{p K}$.
- $\mathrm{p} K_{\mathrm{a}}=-\log \left(K_{\mathrm{a}}\right), K_{\mathrm{a}}=10^{-\mathrm{p} K \mathrm{a}}$
- $\mathrm{p} K_{\mathrm{b}}=-\log \left(K_{\mathrm{b}}\right), K_{\mathrm{b}}=10^{-\mathrm{p} K \mathrm{~b}}$
- The stronger the acid, the smaller the $\mathbf{p} K_{\mathrm{a}}$.
- Larger $K_{\mathrm{a}}=$ smaller $\mathrm{p} K_{\mathrm{a}}$
- Because it is the $-\log$
- The stronger the base, the smaller the $\mathbf{p} K_{\mathrm{b}}$.
- Larger $K_{\mathrm{b}}=$ smaller $\mathrm{p} K_{\mathrm{b}}$

Ionization constants of some weak bases at $25^{\circ} \mathrm{C}$

Name of base	Formula	Structure	$K_{\text {b }}$
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$		5.6×10^{-4}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$		4.4×10^{-4}
Ammonia	NH_{3}		1.8×10^{-5}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$		1.7×10^{-9}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$		3.8×10^{-10}
Urea	$\mathrm{H}_{2} \mathrm{NCONH}_{2}$		1.5×10^{-14}

Equilibria Involving A Weak Base

You have $0.010 \mathrm{M} \mathrm{NH}_{3}$. Calculate the pH .

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
$$

Step 1. Define equilibrium concentrations.
$\left[\mathrm{NH}_{3}\right]$
$\left[\mathrm{NH}_{4}{ }^{+}\right.$]
[OH^{-}]

Initial
change
0.010

0
0
equilib
0.010 - x

X
X

Equilibria Involving A Weak Base

You have $0.010 \mathrm{M} \mathrm{NH}_{3}$. Calculate the pH .

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

$$
\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}
$$

Step 2. Solve the equilibrium expression

$$
\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{x}^{2}}{0.010-\mathrm{x}}
$$

Assume x is small $\left(100 \cdot K_{b}<C_{o}\right)$, so

$$
\mathrm{x}=\left[\mathrm{OH}^{-}\right]=\left[\mathrm{NH}_{4}^{+}\right]=4.2 \times 10^{-4} \mathrm{M}
$$

$$
\text { and }\left[\mathrm{NH}_{3}\right]=0.010-4.2 \times 10^{-4}=0.010 \mathrm{M}
$$

The approximation is valid

